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\There are more things in heaven and earth, Horatio, Than

are dreamt of in your philosophy."

This talk will cover one particular aspect of the yet unsolved Hilbert’s Sixth
Problem (HSP) from a category theoretic point of view1. This is one of the 23
problems Hilbert proposed to the then community of mathematicians in Paris at
the turn of the 20th century and are largely responsible for shaping mathematics
of the last century. HSP called out for an axiomatization of physics and was,
therefore, a programmatic call. Given that HSP has had well over a century to
develop, and that the question was a rather broad one, it has initiated a long
conversation between mathematics, physics and philosophy. It is, therefore,
impossible to talk about all the major developments of HSP in 50 minutes
but I will try to convey the flavour of why this problem is important for the
development of both math and physics together. For special issues dedicated to
the evolution and current status of HSP, see [3][1]. For a detailed introduction
to the topic of this talk, including possible future directions of research see [4].
For a briefer introduction, see [6], which is a chapter in the fancy sounding [5].

There is a long list of unsolved problems in physics. A brief visit even to
its Wikipedia page should convince you. Some of these talk about violations of
parity, some talk about a 55 orders magnitude difference in theory and exper-
imental observation, others talk about no violations of time-symmetry, which
is required in order to explain the matter-antimatter discrepancy, while some
puzzle over why the arrow of time is the way it is. Conversely, the reification
of theoretical observations is resting on empirical confirmations. According to
Lee Smolin, the situation is embarrassing[10].

All such details are based on two frameworks of physics namely a theory of
the very big and a theory of the very small – and there aren’t just two! For
example, David Bohm came up with his own version of the theory of the atomic
world, called Pilot Wave Theory in agreement with Quantum Mechanics and
Bell’s Theorem2. Other theoretical variations of a theory of gravity, of which
there is no experimental confirmation, yet, are Double Special Relativity, de
Sitter Relativity and Loop Quantum Gravity.

1An alternate appraoch, also using category theory, involves symmetric monoidal dagger-
categories, as a generalization of Hilbert Spaces. For a toy model, see [11]. This is not what
we will be talking about.

2No non-local, hidden variable theory can agree with the predictions of quantum mechanics
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Which theory should trump? Of course the one nature thinks is right. Given
all current tests performed so far, both the relativity of Einstein (herein after
called GR) and Quantum Mechanics (QM) have stood up to scrutiny. For exam-
ple, the (weak) equivalence of gravitational and inertial mass has been tested up
to 15 decimal places by MICROSCOPE but no experiment has been performed
using antimatter. A voilation, if it should exist, is expected in between 10−13

and 10−18 range. Does light travel at the same speed in a vacuum, regardless of
wavelength? What about ultra-high energy gamma waves, which have a wave-
length of 1.24 × 10−20 m? At such scales, the effects of quantum fluctuations
might come into play.

Since the most successfully tested theories, to date, are GR and QM, we shall
focus on these frameworks and talk about the mathematical incompatibility of
the two and possible common language for the two. For empirical details and
justification on this narrowed focus, see the comprehensive [9].

1 Differences in Mathematical Framework of GR
and QM

A physical theory requires a space of states with equations that govern how the
states evolve. There are physical quantities assigned to states and their proper-
ties are may be described by their values. For example, the governing equation
of a pendulum convey information (state) of velocity (physical quantity) of the
pendulum with particular magnitude (property). These properties can be de-
scribed in terms of yes-no questions. For example, “is the velocity 4ms−1”, or
“is the mometum between −5kgms−1 and 5kgms−1”?

For GR, a system S is modelled by a 4-dimensional smooth3 manifold M for
a local coordinate system, hence the term “relativity”. M , required to be the
set of states, is equipped with an everywhere nondegenerate4, bilinear from (a
metric tensor) ϕ : Tp (M) × Tp (M) −→ R where Tp (M) is the tangent space
of the manifold for each state p ∈ M with signature (3, 1). That is, ϕ (x,y) =
x1y1 + x2y2 + x3y3 − x4y4. This bilinear form is not required to be postive
definite5 and the absence of positive definiteness allows us to have a “metric”
with negative values. Hence what we have is not a Riemannian manifold but a
pseudo-Riemannian manifold. Since what we have is a differentiable manifold,
we are allowed to consider continous functions χ : M −→ R. Had M been a
(pseudo-)Hermitian Manifold, we could have considered functions χ : M −→ C
but at any rate, such functions are considered to represent a physical quantity
x. Properties of x are restricted to Borel subsets E of R (or C). Thus, the

3The requirement for smoothness is a mathematical necessity. For example, in
defining a metric, one needs smooth functions γ for the integral in d (x, y) =

inf
{∫ 1

0 ‖γ
′ (t)‖ dt : γ : [a, b] −→M,γ (a) = x, γ (b) = y

}
to make sense.

4y˜7−→ (x 7−→ ϕ (x, y))
5ϕ (x,x) > 0 for x 6= 0. This is opposite to the idea of isotropy: vectors x with ϕ (x,x) = 0

are said to be isotropic.
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physical quantity x is said to have property E, which we shall write as x ` E,
if for a state p ∈ χ−1 (E), χ (p) ∈ E.

On the other hand, for QM, one needs a Hilbert Space H, very special man-
ifold, to model a physical system. A closed subspace of H corresponds to a
quantum state of a given system. Physical quantities, called observables, are
modelled by a special class of operators on H. If χ is the observable correspond-
ing to physical quantity x, x ` E ⇐⇒ E ⊂ Sp (χ).

Obviously, the function ϕ : H ×H −→ R for a Hilbert Space is not bilinear
(it’s sesquilinear) but is definitely positive definite. It turns out that this dif-
ference is the biggest and the beauty of the axiomatic method tells us that we
need to look no further to find common grounds. We outline why.

Definition 1 Let X be a vector space over K. A f -sesquilinear 2-form is a
function ϕ : X×X −→ K such that ∀α ∈ K and ∀x,y, z ∈ X,

S1 ϕ (x + y, z) = ϕ (x, z) + ϕ (y, z)

S2 ϕ (x,y + z) = ϕ (x,y) + ϕ (x, z)

S3 ϕ (αx,y) = f (α)ϕ (x,y)

S4 ϕ (x, αy) = ϕ (x,y)α

where f : K −→ K is an involutive anti-automorphism. We shall call the
tuple (X,K, ϕ, f) a sesquilinear space.

It is easy to see that ϕ (0,y) = ϕ (x,0) = 0 because ϕ (0,y) = ϕ (x− x,y) =
ϕ (x,y)−ϕ (x,y) = 0 and so, we can define the orthogonal complement A⊥ of a
set of elements A. This allows us to define a closure operator A 7−→ A⊥⊥ in the
sense of [7] which converts an ordinary set into a subspace by respecting contain-
ment of the set, monotonicity and idempotency. Let (X,K, ϕ, f) be a sesquilin-
ear space with f (x) = −x (that is, ϕ is antisymmetric). Using a particular case
of this formalism, it has been shown in [8] that if ϕ admits nonzero isotropic
vectors, then there are closed subspaces of X that are not splitting. Equiva-
lently, if X is orthomodular6, then X has no nonzero isotropic vectors. Hilbert
Spaces have this property whereas the tangent space of a pseudo-Riemannian
manifold does not.

From these geometric arguments, we move to algebraic arguments.

Definition 2 Let L be a non-empty set. Then, a lattice is an algebraic struc-
ture (L,∧,∨) with two binary operations “∨” and “∧”, called join and meet,
respectively, such that for all x, y, z ∈ L

1. x ∨ x = x (idempotent w.r.t ∨)

2. x ∧ x = x (idempotent w.r.t ∧)

6X is orthomodular if for all closed F ⊆ X, X = F ⊕ F⊥
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3. x ∨ y = y ∨ x (commutative w.r.t ∧)

4. y ∧ x = x ∧ y (commutative w.r.t ∨)

5. (x ∧ y) ∧ z = x ∧ (y ∧ z) (associative w.r.t ∧)

6. (x ∨ y) ∨ z = x ∨ (y ∨ z) (associative w.r.t ∨)

7. x ∧ (x ∨ y) = x (meet-absorption law)

8. x ∨ (x ∧ y) = x (join-absorption law)

With a lattice, we can easily move back and forth to a partial order using
x ≤ y ⇐⇒ x ∨ y = x, or, equivalently, via x ≤ y ⇐⇒ x ∧ y = y. A
lattice L,∧,∨) is said to be bounded if there exists elements 0, 1 ∈ L such
that 0 ≤ x ≤ 1 for all x. For a bounded lattice and x ∈ L, the element x′ ∈ L
such that x ∧ x′ = 0 and x ∨ x′ = 1 is said to be the complement of x. L
is said to be complemented if every element has a complement. A lattice is
called distributive if either x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) or x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z)L is said to be orthocomplemented if there is a function
f : L −→ C, called an orthocomplementation, such that

1. f (x) ∈ Cx

2. f (f (x)) = x

3. x ≤ y =⇒ f (y) ≤ f (x) for all x, y ∈ L

where C is the set of complements of L and Cx is the set of complements
of x. A Boolean Lattice is an orthocomplemented, distributive lattice. Stone’s
Representation Theorem tells us that for every Boolean algebra (lattice) is iso-
morphic to (P (X) ,∪∩,c ). For reasons that evade me7, a collection of objects
induced by a pseudo-Riemannian manifold form a Boolean Algebra.

On the other hand, a lattice L is orthomodular if x ≤ z implies x ∨
(x′ ∧ z) = z for all x, z ∈ L. It is an easy exercise to show that (X,K, ϕ, f) is
orthomodular if and only if the lattice formed by a collection of closed subspaces
of X is orthomodular, hence the name. A Boolean Lattice models classical logic
whereas orthomodular lattice models Quantum Logic, with implication x =⇒ y
in both given by x ≤ y.

A distributive lattice is orthomodular but the converse does not hold8. The
collection of closed subsets of a Hilbert space H form an orthomodular lattice,
with complement given by the perp operator (collection of elements orthogo-
nal to vectors in a given set), meet and join defined by intersection and direct

7This has something to do with what’s called measurable locale. These require that the
manifold be smooth and force us to consider only Borel measurable sets instead of the richer
Lebesgue measurable sets

8In fact, a formulation of the Kochen-Specker tells us that any orthomodular lattice will
admit a nontrivial morphism to {0, 1} only if it is distributive.
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sum, respectively. This lattice is not distributive: for H = R2, consider sub-
spaces X = (x, 0), Y = (0, y) and Z = (x,mx). Then, (X ⊕ Y ) ∩ Z = Z
but (X ∩ Z) ⊕ (Y ∩ Z) = {0}. Physically, there is a nice explanation of why
distributive law fails, based on the Hiesenberg Uncertainty Principle (and this
follows simply from the noncommutativity of two operators) on the Wikipedia
Page for Quantum Logic.

The differences between the two major frameworks of physics are, therefore,
inherent in the way they have been set up and a unification for them requires a
departure from either tool.

2 Enter Category Theory

In general, a category inherently lacks precise statements about its objects and
is more focused on the relationships between the objects. This shortcoming
is a little refined in a topos, which is simply a category C with finite limits
and colimits, exponentials and a subobject classifier. The category Set is an
example, as is the category of presheaves of set on D SetD

op

.
Recall that a limit L in C is the datum given by an indexing category I,

a covariant functor F : I −→ C such that for each α ∈ HomI (I, J), we have
morphism λI ∈ HomC (L, I), λJ ∈ HomC (L, J) with λJ = F (α) ◦ λI

L

F(I) F(J)

λI λJ

F(α)

and that L is final with this property. With finite limits and colimits, we can talk
about products and coproducts, terminal objects, equalizers and coequalizers
(e.g. kernels and cokernels in Ab). With the terminal object T , we can define
an “element” (say x) of an object X (no matter what X is) by the morphism
x̂ : T −→ X. This is technically called a global element of an object X. Thus,
the collection of global elements of X is HomC (T,X).

Exponentiation for objects Y,Z of C is defined as the object ZY together
with a morphism f : ZY × Y −→ Z, if for any object X and morphism g :
X × Y −→ Z, there is a unique morphism ϑ : X −→ ZY such that

X × Y

ZY × Y Z

gϑ×idY

f

In this case, ϑ represents curried g. Think of a homotopy g : [0, 1]×Y −→ Z
given by g (t, .) = gt (.) = ϑ (t). This example, hopefully, makes it clear that g is
called an evaluation map (ϑ is called transpose of g). Exponentiation allows us
to talk about morphisms but in a more general setting since HomC (X × Y,Z) '
HomC

(
X,ZY

)
.
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A subobject classifier is a special object Ω such that for any set A, an
object f ∈ HomC (A,Ω) corresponds bijectively to a subobject of A. Thus, it
allows us to talk about subojects of objects which are not sets. For sets, this
is Ω = {0, 1} and f = χS for some S ⊂ A. Thus, the collection of subobjects
of an object X is none other than HomC (X,Ω). In fact, with exponentiation,
we are allowed to talk about ΩX , called the power object of X. The collec-
tion of subjects of ΩX is, by definition, HomC

(
T,ΩX

)
' HomC (T ×X,Ω) '

HomC (X,Ω), which is nothing but the collection of subobjects of X.
Since we have HomC (T,X) and HomC (X,Ω) and we are allowed to compose

morphisms in any category, we can talk about a global element x being in
a subobject K of an object X since we can consider the morphism χK ◦ x̂ :
{∗} −→ X −→ Ω. This allows us to talk about valuations.

A Heyting Algebra H is a bounded, distributive lattice with a binary oper-
ation →:H×H −→ H such that c ∧ a ≤ b if and only if c ≤ a→b. A Boolean
lattice is an example if we define complement a′ of an element a by a→0. Heyt-
ing Algebras model intuitionistic logic. Thus, the law of excluded middle does
not hold in a Heyting Algebra. The collection ΩX of subobjects of X form a
Heyting Algebra.

3 Motivation the Physics for Topos

The opening of last section talked about the requirements for a physical theory.
These distill down to signalling a special object for the state x, a morphism for
the physical quantity χ, a special object for the value of the physical quantity
and a special subobject E from the state object x. Since we need morphisms
from one or more state(s) to another, if we were to have a category, we would
need exponentiation. Since we need to determine if x ` E, then we could use
the subobject classifier. We can be much more explicit:

1. A physical quantity x is represented by a morphism χ ∈ HomC (X,R)
of a universal object X (used to represent a state object) and R is a
quantity-value object

2. Propositions p about the physical system modelled by X are represented
by the subobject P , an element of the Heyting algebra, ΩX . P is called a
pseudo-state9

3. x ` E if and only if χP ◦ x̂ is true, where E is a subobject of R.

For a more philosophical justification, see [2][6].

9By the Kochen-Specker theorem, there are no global elements of P in the particular topos
of Hilbert Spaces, hence the name.
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4 Future Work

In my talk, I did not talk about dynamics of a given physical system. There is
no simple category theoretic version of time evolution that I know of. Tying up
theoretical loose ends in my knowledge of the detailed relationship of category
theory and physics is my next step. Later on, the relation of a topos to gauge
theory needs to be investigated.

5 Appendix A: Uncertainty Principle

Definition 3 Let Â,B̂ be two self-adjoint operators on H. The commutator[
Â, B̂

]
of Â,B̂ is defined as ÂB̂ − ÂB̂ and the anti-commutator

{
Â, B̂

}
is

defined as ÂB̂ + ÂB̂

An interesting consequence of these properties are the uncertainty relations,
from which stems Hiesenberg’s uncertainty relation

Definition 4 Deviation 4Â of an operator Â is defined as

4Â = Â− 〈ψ, Âψ〉Î

where
〈
Â
〉

= 〈ψ, Âψ〉 denotes the expectation value of Â where ψ ∈ H is a state

(that is, ‖ψ‖ = 1). The

Lemma 5 If Â is self-adjoint, then so is 4Â

Proof. Â∗ = Â implies 4Â∗ = Â∗−〈ψ, Âψ〉Î∗ = Â−〈Âψ, ψ〉Î = Â−〈ψ, Âψ〉Î

Lemma 6

〈(
4Â

)2〉
= 〈Â2〉 − 〈Â〉2

Proof. From the definition of 4Â, it follows that(
4Â

)2
=

(
Â−

〈
Â
〉
Î
)2

=
(
Â−

〈
Â
〉
Î
)(

Â−
〈
Â
〉
Î
)

= Â2 −
〈
Â
〉
Â− Â

〈
Â
〉

+
〈
Â
〉2
Î

= Â2 − 2
〈
Â
〉
Â+

〈
Â
〉2
Î

Now,

〈(
4Â

)2〉
= 〈ψ,

(
4Â

)2
ψ〉 = 〈ψ,

(
Â2 − 2Â

〈
Â
〉

+
〈
Â
〉2)

ψ〉

= 〈ψ, Â2ψ〉 − 2
〈
Â
〉
〈ψ, Âψ〉+

〈
Â
〉2
〈ψ,ψ〉
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= 〈ψ, Â2ψ〉 − 2
〈
Â
〉2

+
〈
Â
〉2

= 〈Â2〉 − 〈Â〉2

Using this, we can define the uncertainty ∆A of Â: ∆A =

√〈(
4Â

)2〉
=√

〈Â2〉 − 〈Â〉2. And now, for the celebrated Uncertainty Relation

Theorem 7 Let Â, B̂ be any two Hermitian operators. Then, ∆A4B ≥ 1
2

∣∣∣〈[Â, B̂]
〉∣∣∣

Proof. If
(
4Â

)
ψ =

(
Â−

〈
Â
〉
Î
)
ψ = χ and

(
4B̂

)
ψ =

(
B̂ −

〈
B̂
〉
Î
)
ψ = φ,

then

〈
(
4Â

)2
〉〈
(
4B̂

)2
〉 = 〈ψ,

(
4Â

)2
ψ〉〈ψ,

(
4B̂

)2
ψ〉

= 〈χ, χ〉〈φ, φ〉
≥ |〈χ, φ〉|2 by the Cauchy-Schwarz inequality

=
∣∣∣〈(4Â)ψ,(4B̂)ψ〉∣∣∣2

=
∣∣∣〈ψ,(4Â4B̂)ψ〉∣∣∣2 =

∣∣∣〈4Â4B̂〉∣∣∣2
From a direct calculation, it can be inferred

∣∣∣〈4Â4B̂〉∣∣∣2 = 1
4

∣∣∣〈[Â, B̂]〉∣∣∣2+

1
4

∣∣∣〈{Â, B̂}〉∣∣∣2
⇒
∣∣∣〈4Â4B̂〉∣∣∣2 ≥ 1

4

∣∣∣〈[Â, B̂]〉∣∣∣2
Since

〈(
4Â

)2〉〈(
4B̂

)2〉
≥
∣∣∣〈4Â4B̂〉∣∣∣2 and

∣∣∣〈4Â4B̂〉∣∣∣2 ≥ 1
4

∣∣∣〈[Â, B̂]〉∣∣∣2
we have ∆A∆B ≥ 1

4

∣∣∣〈[Â, B̂]〉∣∣∣
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